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Abstract Obesity has repeatedly been linked to reorganization of the gut microbiome, yet to this 
point obesity therapeutics have been targeted exclusively toward the human host. Here, we show 
that gut microbe-targeted inhibition of the trimethylamine N-oxide (TMAO) pathway protects mice 
against the metabolic disturbances associated with diet-induced obesity (DIO) or leptin deficiency 
(Lepob/ob). Small molecule inhibition of the gut microbial enzyme choline TMA-lyase (CutC) does not 
reduce food intake but is instead associated with alterations in the gut microbiome, improvement 
in glucose tolerance, and enhanced energy expenditure. We also show that gut microbial CutC inhi-
bition is associated with reorganization of host circadian control of both phosphatidylcholine and 
energy metabolism. This study underscores the relationship between microbe and host metabolism 
and provides evidence that gut microbe-derived trimethylamine (TMA) is a key regulator of the 
host circadian clock. This work also demonstrates that gut microbe-targeted enzyme inhibitors have 
potential as anti-obesity therapeutics.
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Editor's evaluation
Schugar et al. present data on the effects of a small molecule inhibitor (iodomethylcholine, IMC) 
of bacterial choline metabolism. This extends prior work from this team of scientists to focus on 
obesity-related phenotypes. They report a decrease in body weight in a diet-induced obesity model 
accompanied by lower insulin and improved glucose control. Remarkably, they also observed 
phenotypes in the ob/ob (leptin-deficient) model, which has severe obesity. They go on to describe 
additional phenotypes in IMC treated and control mice: gut microbiota, gene expression, and 
metabolomics, with a focus on circadian rhythm. Taken together, these data support the potential 
therapeutic value of IMC for treating obesity and associated metabolic diseases.

Introduction
There is a growing body of evidence that microbes residing in the human intestine represent a crit-
ical environmental factor that influences virtually all aspects of human health and disease (Brown 
and Hazen, 2015; Sonnenburg and Bäckhed, 2016). Our gut microbiome plays a central role in 
vital processes such as energy harvest from our diet, entraining our immune system during early life, 
xenobiotic metabolism, and the production of a diverse array of small molecule metabolites that are 
essential to human life (Brown and Hazen, 2015; Sonnenburg and Bäckhed, 2016). Although the 
microbiome field has uncovered many correlative relationships with human health and disease, there 
are few examples whereby alterations in the gut microbiome have been causally linked. One of the 
earliest relationships established between gut microbes and human disease was the link between 
alterations in gut microbial phyla (Bacteroidetes and Firmicutes) and obesity susceptibility, and the 
microbial transplantation studies revealing obesity susceptibility as a transmissible trait (Bäckhed 
et al., 2004; Ley et al., 2005; Turnbaugh et al., 2006; Turnbaugh et al., 2009). Specifically, obese 
mice harbor gut microbial communities with enhanced capacity to harvest energy from indigestible 
carbohydrates (Turnbaugh et al., 2006), and transplantation of either cecal contents or feces from 
either obese mice or humans is sufficient to promote obesity and related insulin resistance in germ-
free mouse recipients (Bäckhed et al., 2004; Ley et al., 2005; Turnbaugh et al., 2006; Turnbaugh 
et al., 2009). There is also accumulating evidence that antibiotic exposure in early life can predispose 
children to become overweight or obese later in life (Ajslev et al., 2011), and antibiotic treatment in 
mice prior to weaning increases obesity and related insulin resistance in adulthood (Cho et al., 2012). 
It is interesting to note that nearly all diseases where obesity is a predisposing comorbidity (diabetes, 
liver disease, cardiovascular disease, hypertension, chronic kidney disease, and diverse cancers) have 
been shown to have a clear gut microbiome link (Canfora et al., 2019; Aron-Wisnewsky et al., 2020; 
Brown and Hazen, 2018; Knauf et al., 2019; Marques et al., 2018; McQuade et al., 2019).

Although there is now ample evidence that gut microbes play a contributory role in the devel-
opment of obesity and related metabolic disorders, obesity-targeted drug discovery to this point 
has focused solely on targets encoded by the human genome. Our knowledge is rapidly expanding 
regarding what types of microbes are associated with obesity and related disorders, including the 
repertoire of microbe-associated molecule patterns they harbor and the vast array of metabolites that 
they produce. However, there are very few examples where this information has been leveraged into 
therapeutic strategies. The microbiome-targeted therapeutic field has primarily focused on either 
prebiotic or probiotic approaches, yet thus far these approaches have resulted in very modest or 
non-significant effects in obesity-related disorders in human studies (Aron-Wisnewsky et al., 2019; 
Asgharian et al., 2020; Reijnders et al., 2016; Madjd et al., 2016; Koutnikova et al., 2019). As 
an alternative microbiome-targeted approach, we and others have begun developing non-lethal 
selective small molecule inhibitors of bacterial enzymes with the hopes of reducing levels of disease-
associated microbial metabolites (Roberts et  al., 2018; Wang et  al., 2015; Gupta et  al., 2020; 
Organ et al., 2020; Orman et al., 2019). We have recently shown that small molecule inhibition of the 
gut microbial transformation of choline into trimethylamine (TMA), the initial and rate-limiting step in 
trimethylamine N-oxide (TMAO) generation (Wang et al., 2011), can significantly reduce atheroscle-
rosis, thrombosis, and adverse ventricular and kidney remodeling in mice (Roberts et al., 2018; Wang 
et al., 2015; Gupta et al., 2020; Organ et al., 2020). Since 2011 the gut microbe-associated TMAO 
pathway has been associated with many human diseases associated with obesity including athero-
sclerosis (Wang et al., 2011; Koeth et al., 2013), thrombosis (Zhu et al., 2016; Zhu et al., 2017), 
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chronic kidney disease (Bell et al., 1991; Tang et al., 2015), heart failure (Tang et al., 2014; Trøseid 
et al., 2015), cancer (Bae et al., 2014; Xu et al., 2015), and diabetes (Shan et al., 2017; Miao et al., 
2015). Given the fact that obesity is a comorbidity in all of these human diseases, here we set out to 
determine whether selective small molecule inhibition of the gut microbial choline transformation into 
TMA, a metabolic activity catalyzed by the microbial choline TMA lyase CutC (Craciun and Balskus, 
2012), can protect against metabolic disturbance in preclinical mouse models of obesity. Although 
there is clear evidence that TMAO can directly impact cell signaling in host platelets and immune cells 
(Zhu et al., 2016; Seldin et al., 2016), it is still incompletely understood how the TMAO pathway is 
mechanistically linked to obesity-related cardiometabolic diseases. It is well appreciated that manip-
ulation of the gut microbiome can impact obesity in part via rewiring of the host circadian clock, and 
reciprocally it has been shown that an intact circadian clock in the host can impact oscillatory behavior 
of gut microbiota (Org et al., 2015; Seldin et al., 2016; Thaiss et al., 2014; Liang et al., 2015). Here, 
we hypothesized that gut microbe-driven TMA production may serve as a high fat diet (HFD)-induced 
signal that integrates diet-microbe-host interactions to shape obesity-related circadian dysfunction 
and metabolic disturbance.

Results
Microbial choline TMA lyase inhibition protects mice from obesity 
development
To assess whether small molecule inhibition of gut microbial TMA production can protect mice from 
obesity, we treated mice with the non-lethal mechanism-based bacterial choline TMA lyase inhibitor 
iodomethylcholine (IMC) (Roberts et al., 2018). This small molecule inhibitor exhibits potent in vivo 
inhibition of the gut microbial choline TMA lyase enzyme CutC, lowering host plasma TMAO levels 
>90% (Roberts et al., 2018; Gupta et al., 2020; Organ et al., 2020). Designed as a suicide substrate 
mechanism-based inhibitor, past studies reveal that the vast majority of IMC is retained in bacteria 
and excreted in the feces with limited systemic exposure of the drug in the host (Roberts et al., 
2018). When administered in an HFD, IMC effectively reduces levels of both the primary product of 
CutC TMA and the host liver-derived co-metabolite TMAO (Figure 1a and b). IMC was effective in 
blunting diet-induced obesity (DIO) (Figure 1c), without altering food intake (Figure 1d). DIO mice 
treated with IMC also showed improvements in glucose tolerance (Figure  1e), exhibited marked 
reductions in plasma insulin levels in fed mice but not under fasting conditions (Figure 1f) and had 
significant reductions in fat mass (Figure 1—figure supplement 1c,d). It is important to note that 
the ability of IMC to reduce adiposity was specific to high fat feeding and was not seen in low fat-fed 
mice (Figure 1—figure supplement 1c,d). Also, IMC treatment did not significantly alter intestinal 
fatty acid absorption or hepatic steatosis (Figure 1—figure supplement 2a,f and 3). Next, we admin-
istered IMC to hyperphagic leptin-deficient (Lepob/ob) mice in a chow-based diet (Figure  1g–l). As 
expected, IMC effectively lowered both TMA and TMAO levels in Lepob/ob mice (Figure 1g and h). 
Quite unexpectedly, IMC dramatically protected Lepob/ob mice from body weight gain, where some of 
the drug-treated mice were 15–20 g lighter than control Lepob/ob mice (Figure 1i). Notably, IMC-driven 
protection from obesity was not associated with decreased food intake, which was paradoxically higher 
overall in IMC-treated mice (Figure 1j). Instead, IMC treatment promoted large increases in energy 
expenditure through both the light and dark cycles (Figure 1l, Figure 1—figure supplement 4a-c) 
Although IMC effectively reduced body weight and adiposity in Lepob/ob mice, this was not associated 
with improvements in glucose tolerance (Figure 1k). Given these striking results in DIO and Lepob/

ob obesity progression models, we next wanted to determine if IMC could likewise provide obesity 
protection in mice with established obesity (i.e., a treatment regimen). To test this, we fed C57BL/6 J 
mice HFD for 6 weeks to allow for mice to reach obese conditions (body weights ranging from 35 to 
40 g) and then initiated IMC treatment. Although IMC did not promote weight loss, it did effectively 
reduce the trajectory of weight gain and improved glucose tolerance in this obesity treatment model 
(Figure 1—figure supplement 4d, f). During the early phases of this obesity treatment study, IMC-
treated mice again exhibited unexpected increased food intake compared to controls (Figure 1—
figure supplement 4e). It is important to note that long-term IMC treatment did not promote either 
liver or renal toxicity, as shown by normal plasma enzyme levels as well as normal tissue histology in 
liver and adipose depots (Figure 1—figure supplement 5a-e). To more comprehensively understand 

https://doi.org/10.7554/eLife.63998


 Research article﻿﻿﻿﻿﻿﻿ Medicine

Schugar, Gliniak, Osborn, et al. eLife 2022;11:e63998. DOI: https://doi.org/10.7554/eLife.63998 � 4 of 27

the global effects of choline TMA lyase inhibition on white adipose tissue (WAT) gene expression, we 
performed unbiased RNA sequencing (Figure 1—figure supplement 4g-j). Principal coordinate anal-
ysis (PCA) of RNA expression profiles showed clear separation of adipose gene expression between 
HFD control vs. HFD with IMC (Figure 1—figure supplement 4g). The most differentially expressed 
genes altered by IMC were enriched in common pathways of adipogenesis, fatty acid metabolism, 
inflammation, and cytokine signaling (Figure  1—figure supplement 4i). Collectively, these data 
demonstrate that gut microbe-targeted choline TMA lyase inhibition can protect mice from obesity 
and selectively reorganize host adipose tissue gene expression.

Choline TMA lyase inhibition facilitates alterations of the gut 
microbiome
One theoretical advantage of non-lethal microbe-targeted choline TMA lyase inhibitors, compared 
to antibiotic therapies, is that microbiome restructuring effects of the drug are expected to primarily 
target the species that rely on choline as a carbon or nitrogen source (Maier et al., 2018). Therefore, 
we next examined whether IMC treatment was associated with alterations in choline utilizers and 
other members of the gut microbiome community that may contribute to improvement in obesity-
related metabolic disturbances. IMC treatment in HFD-fed mice resulted in significant restructuring of 
the cecal microbiome at every taxonomic level (Figure 2a–e). PCA of microbial taxa revealed distinct 

Figure 1. Small molecule choline trimethylamine (TMA) lyase inhibition improves obesity. Panels (a–f) and (g–l) represent data from control and 
iodomethylcholine (IMC)-treated high fat diet (HFD)-fed and Lepob/ob mice (chow-fed), respectively. (a) and (g) Plasma TMA levels. (b) and (h) Plasma 
trimethylamine N-oxide (TMAO) levels. (c) and (i) Biweekly body weights. (d) and (j) Biweekly food consumption. (e) and (k) Glucose tolerance test. 
(f) Plasma insulin levels. (l) Average oxygen consumption. In panels (a–e) and (g–k), groups were compared using t-tests. In panels (f and l), groups were 
compared using two-way analysis of variance (ANOVA) with Tukey’s multiple comparisons test. Significance is defined as: *, p < 0.05. **, p < 0.01. ***, p 
< 0.001, ****, p < 0.0001. n = 6–10 per group.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Iodomethylcholine (IMC) does not confer antiobesogenic properties in a low fat diet (LFD) context.

Figure supplement 2. Iodomethylcholine (IMC) treatment does not alter hepatic steatosis in wildtype or genetically obese mice.

Figure supplement 3. Iodomethylcholine (IMC) treatment does not impact intestinal fat absorption.

Figure supplement 4. Choline trimethylamine (TMA) lyase inhibition increases energy expenditure and alters gene expression in white adipose tissue.

Figure supplement 5. Iodomethylcholine (IMC) supplementation does not lead to morphological changes in liver or adipose tissues and does not 
promote hepatic or renal toxicity.

https://doi.org/10.7554/eLife.63998
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Figure 2. Small molecule trimethylamine (TMA) lyase inhibition alters the gut microbiome. Panels (a–e) and (f–i) represent data from control and 
iodomethylcholine (IMC)-treated high fat diet (HFD)-fed and Lepob/ob mice (chow-fed), respectively. (a and f) Principal coordinate analysis plot of 
microbiota profiles built from weighted Unifrac distances. Each point represents a single sample from a single mouse. Positions of points in space 
display dissimilarities in the microbiota, with points further from one another being more dissimilar. (b and g) Barplot of cecal microbiota at the phylum 
level. Each bar represents an individual mouse and each color an individual phylum. (c) Relative abundance of Firmicutes, Bacteroidetes, and the 

Figure 2 continued on next page
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clusters, indicating that IMC promoted restructuring of the cecal microbiome (Figure  2a). At the 
phylum level, HFD-fed IMC-treated mice had large increases in Verrucomicrobia and Bacteroidetes, 
and significant reductions in Firmicutes (Figure 2b and c). Of note, the ratio of Firmicutes to Bacte-
roidetes, which has been correlated with obesity in both humans and mice (Bäckhed et al., 2004; 
Ley et al., 2005; Turnbaugh et al., 2006; Turnbaugh et al., 2009), is significantly reduced by IMC 
treatment of the HFD-fed mice (Figure 2c). Performance of linear discriminant analysis coupled with 
effect size measurements (LEfSe analysis) revealed that IMC promoted significant reductions in the 
proportions of the taxa Desulfovibrionaceae, Butyrovibrio, Bilophia, Peptococcaceae, and Dorea, and 
increases in Odoribacter, Roseburia, and several members of the Clostridiaceae family (Figure 2d). 
We also examined whether the proportions of cecal genera were significantly correlated with plasma 
TMA, body weight, and glucose tolerance in DIO mice, and found that increases in Akkermansia 
and reductions in Bilophila were significantly correlated with plasma TMA level, and similar yet non-
significant trends were found with body weight and glucose tolerance (Figure 2e). Remarkably, IMC 
rapidly reorganized the gut microbiome within 48 hr of the first drug exposure, and similar changes 
were seen after 6 days (Figure 2—figure supplement 1a, b) and a chronic treatment of 20 weeks 
(Figure  2). Similar to HFD-fed mice (Figure  2a–e), IMC also significantly altered the cecal micro-
biome in Lepob/ob mice (Figure 2f-i). In Lepob/ob mice, IMC significantly reduced the proportions of 
Adlercreutzia, Rikenellaceae, Peptococcaceae, and Clostridiales, while increasing levels of Molicutes, 
Allobaculum, Peptostreptococcaceae, and Akkermansia (Figure 2g–h). Correlation analysis in Lepob/

ob mice revealed that IMC-induced alterations in Akkermansia, Clostridiales, and Allobaculum were 
significantly associated with circulating TMA and body weight (Figure 2i). Notably, in both the Lepob/

ob and DIO models, the large increase in the proportions of Verrucomicrobia phylum seen with IMC 
are largely explained by increased level of Akkermansia muciniphila, which has been pursued as a 
therapeutic probiotic species for diabetes amelioration in other studies (Everard et al., 2013; Shin 
et al., 2014; Org et al., 2015) and is correlated to TMA and body weight phenotypes in the current 
study. Collectively, these data demonstrate that inhibition of gut microbial choline to TMA transfor-
mation with a selective non-lethal small molecule inhibitor promotes striking alterations of the gut 
microbiome that may contribute in part to improvements in energy metabolism and obesity observed 
in the host.

The gut microbial TMAO pathway regulates host circadian rhythms
Although there is clear evidence that TMAO can directly impact cell signaling in macrophages (Seldin 
et al., 2016), endothelial cells (Seldin et al., 2016), and platelets (Zhu et al., 2016), it is still incom-
pletely understood how the TMAO pathway is mechanistically linked to all of these common obesity-
related diseases. Because of the recent appreciation of the gut microbiome as a coordinator of host 
metabolism and obesity-related phenotypes (Org et al., 2015; Seldin et al., 2016; Thaiss et al., 
2014; Liang et al., 2015), we hypothesized that the metaorganismal TMAO pathway regulates host 
circadian rhythms to impact obesity and its associated cardiometabolic complications. The data that 
led us to this possibility includes: (1) misalignment of the host circadian clock is associated with the 
same human diseases that the TMAO pathway has been linked to Org et al., 2015; Seldin et al., 
2016; Thaiss et al., 2014; Liang et al., 2015, (2) the gut microbiome oscillates in a circadian manner 
and this is highly sex specific (similar to the TMAO pathway) (Org et al., 2015; Seldin et al., 2016; 
Thaiss et  al., 2014), and (3) disruption of the host circadian core clock machinery promotes gut 
microbial ‘dysbiosis’ and alters circulating levels of gut-derived metabolites (Org et al., 2015; Seldin 
et al., 2016; Thaiss et al., 2014; Liang et al., 2015). Given these clear overlaps, we investigated 

Firmicutes to Baceteroidetes ratio. The boxes represent the 25th and 75th quartiles, and the line displays the median value within each group. Points 
extending beyond the lines are outliers defined as values greater or less than 1.5 times the interquartile range. (d and h) Linear discriminatory analyses 
plot of taxa differing significantly with IMC treatment. (e and i) Correlation between taxa and plasma TMA levels, body weight, and glucose tolerance 
(HFD-fed mice only). Values in both X and Y directions are plotted as mean ± SEM.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Iodomethylcholine (IMC) supplementation leads to rapid kinetic changes in the gut microbiome community structure.

Figure supplement 2. Trimethylamine (TMA) lyase inhibition beneficially improves circadian oscillations in gut microbial communities.

Figure 2 continued

https://doi.org/10.7554/eLife.63998
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whether different substrates and regulatory genes within the TMAO pathway exhibited circadian 
rhythmicity. Indeed, we found that several nodes within the gut microbial TMAO pathway showed 
strong diurnal oscillations in mice (Figure 3a). Plasma levels of both choline, carnitine, and TMA were 
relatively low during the light cycle, and peak at the beginning of the dark cycle when mice are most 
active and consuming food (Figure 3a). However, TMAO showed more modest oscillatory behavior 
(Figure 3a and Figure 3—figure supplement 1a,d). We also found that the hepatic expression of 

Figure 3. Nodes within the metaorganismal trimethylamine N-oxide (TMAO) pathway show diurnal rhythmicity and choline trimethylamine (TMA) lyase 
inhibition alters the host circadian clock. Wildtype male chow-fed C57BL/6J mice were necropsied at 4 hr intervals to collect plasma and tissue over a 
24 hr period. (a) Plasma choline, L-carnitine, TMA, TMAO were quantified by liquid chromatography with online tandem mass spectrometry (LC-MS/
MS); hepatic expression of Fmo3 mRNA or gastrocnemius muscle expression of Taar5 mRNA was quantified via quantitative PCR (qPCR) (n = 7–8). 
(b) Wildtype male C57BL/6J mice were fed chow or chow supplemented with the choline TMA lyase inhibitor iodomethylcholine (IMC) for 7 days. Mice 
were then necropsied at 4 hr intervals to collect liver, gonadal white adipose tissue, or gastrocnemius skeletal muscle. We then performed qPCR to 
examine the mRNA expression in liver, white adipose, and gastrocnemius skeletal muscle of key circadian clock regulators including aryl hydrocarbon 
receptor nuclear translocator like (Arntl; BMAL1), nuclear receptor subfamily one group D member 1 (Nr1d1; RevErbα), cryptochrome 1 (Cry1), or period 
2 (Per2) (n = 7–8). Significance (p < 0.05) between diet groups at specified zeitgeber (ZT) time points was compared using Student’s t-tests.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Trimethylamine (TMA) lyase inhibition alters the circadian rhythmicity of host metabolism-associated gene expression.

Figure supplement 2. Iodomethylcholine (IMC) treatment significantly alters the circadian oscillations in metabolic hormones and gene expression in 
high fat diet (HFD)-fed mice.

https://doi.org/10.7554/eLife.63998
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flavin-containing monooxygenase 3 (Fmo3) is quite low during the day but increases 6-fold during the 
early dark cycle (Figure 3a). However, this pattern for Fmo3 expression is opposite in WAT (Figure 4—
figure supplement 1g). Unexpectedly, we identified a tissue-specific circadian rhythms in the host 
TMA receptor (trace amine-associated receptor 5; Taar5) (Figure 3a). It is important to note that Taar5 
oscillation specifically occurs in skeletal (Figure 3a; Figure 3—figure supplement 1c,d; Figure 4—
figure supplement 1e) and cardiac muscle (Figure 4—figure supplement 1f), and shows no oscil-
latory behavior in the olfactory bulb (Figure 4—figure supplement 1g), where it is important for 
sensing the ‘fishy odor’ smell of TMA (Thaiss et al., 2016; Wang et al., 2017). Collectively, these data 
suggest that the gut microbial TMAO pathway dynamically oscillates in a circadian manner.

Gut microbe-targeted inhibition of TMA production rewires host-
microbe metabolic crosstalk
To determine whether TMA or TMAO could potentially serve as a gut microbe-derived signal to 
entrain the host circadian clock, we treated a set of mice with IMC acutely (7 days) and examined 
effects on the core clock machinery as well as clock-mediated regulation of host metabolism. In this 
circadian study, IMC treatment effectively lowered circulating TMA and TMAO at every time point, yet 
there were still highly rhythmic low levels of plasma TMA and TMAO observed, possibly originating 
from microbial metabolism of non-choline (i.e., carnitine, γ-butyrobetaine, betaine, trimethyllysine) 
nutrient sources via microbial enzymes that are not inhibited by IMC (Li et al., 2013; Wallrabenstein 
et  al., 2013; Zhu et  al., 2014; Figure  3—figure supplement 1a, d). Unexpectedly, provision of 
IMC altered the expression of core clock transcription factors in a highly tissue-specific manner. In 
the liver, microbial choline TMA lyase inhibition modestly increased the peak amplitude of the core 
clock transcription factors Bmal1 and Nr1d1 yet blunted the rhythmic expression of Cry1 (Figure 3b). 
In WAT, choline TMA lyase inhibition blunted the peak amplitude of Bmal1 (Figure 3b). However, 
in skeletal muscle, we found the most striking differences in the core clock machinery where IMC-
treated mice showed marked increases at all time points for Nr1d1 and a near-complete phase shift 
for Cry1 (Figure 3b; Figure 3—figure supplement 1c, d). Prior studies have confirmed that IMC is 
poorly absorbed in the host and selectively accumulates in gut microbiota (Roberts et  al., 2018; 
Gupta et al., 2020). It is tempting to speculate that the circadian oscillations in skeletal muscle are 
highly drug responsive due in part to the fact that the TMA receptor Taar5 oscillates there (Figure 3a; 
Figure 3—figure supplement 1c, d) to sense TMA and is not a ‘direct’ result of IMC per se, but 
rather an effect of IMC on gut microbial production of TMA. Critically, IMC does not alter the expres-
sion of core clock genes in areas of the central nervous system like the olfactory bulb where Taar5 is 
abundantly expressed throughout the day and does not oscillate diurnally. Also, in mice fed a HFD to 
induce obesity, we found that IMC treatment significantly altered the oscillatory patterns of key host 
metabolic hormones insulin, leptin, and adiponectin (Figure 3—figure supplement 2a-c), which is 
likely to play a modulatory role in downstream lipid metabolic phenotypes. Furthermore, in HFD-fed 
mice IMC treatment altered the circadian oscillation in gene expression for cryptochrome 1 (Cry1) and 
period 2 (Per2) and key genes involved in lipid metabolism including carnitine palmitoyl transferase 
1α (Cpt1α) and betaine homocysteine methyltransferase (Bhmt) (Figure 3—figure supplement 2d-i).

Recent literature has demonstrated that the composition of the gut microbiome is also under circa-
dian regulation (Org et al., 2015; Seldin et al., 2016; Thaiss et al., 2014). These reports show that 
even at the phylum level, bacterial communities oscillate in a highly circadian manner, and gut microbe 
community oscillation can impact host metabolic rhythms that are linked to human disease (Org et al., 
2015; Seldin et al., 2016; Thaiss et al., 2014). However, there is almost nothing known regarding 
what regulates this diurnal rhythm in gut microbial communities. Here, we demonstrate that microbial 
production of TMA, as modulated by the choline TMA lyase inhibitor IMC, has striking effects on 
circadian oscillations in gut microbial communities (Figure 2—figure supplement 2a-c). PCA revealed 
distinct group clusters, indicating that IMC promoted restructuring of the cecal microbial community 
composition in a circadian manner (Figure 2—figure supplement 2a). At the phylum level, IMC treat-
ment results in large relative increases in Bacteroidetes, while lowering the overall levels of Firmicutes 
at all time points (Figure  2—figure supplement 1e, Figure  2—figure supplement 2c). Interest-
ingly, IMC treatment promoted a significant increase in the abundance of A. muciniphila, proportions 
of which have been reported to be inversely correlated with body weight and insulin sensitivity in 
numerous studies in both rodents and humans (Everard et al., 2013; Shin et al., 2014; Org et al., 

https://doi.org/10.7554/eLife.63998
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2015; Figure 2b, d, g and h, Figure 2—figure supplement 1c, d, Figure 2—figure supplement 
2c). In addition, IMC treatment increased the level of S24-7 Bacteroidetes family members, which 
have recently been reported to be depleted in several mouse models of obesity-related metabolic 
disturbance (Koeth et al., 2014; Li et al., 2018; Lieber et al., 2019; Figure 2—figure supplement 
2c). Collectively, these data demonstrate that gut microbial production of TMA may be an important 
cue to impact the diurnal oscillations in gut microbial community structure and metabolic function in 
the host.

To understand how choline TMA lyase inhibition altered host metabolic processes in an unbiased 
way, we performed untargeted plasma metabolomics across a 24  hr period in IMC-treated mice 
(Figure 4). This large circadian metabolomics dataset was initially evaluated for any large-scale trends 
utilizing selective paired ion contrast analysis (SPICA) (Liu et al., 2019) to identify key zeitgeber (ZT) 

Figure 4. Small molecule inhibition of choline trimethylamine (TMA) lyases impacts circadian oscillations in choline-containing phospholipids in the 
host circulation. Wildtype male C57BL/6J mice were fed chow or chow supplemented with the choline TMA lyase inhibitor iodomethylcholine (IMC) 
for 7 days. Mice were then necropsied at 4 hr intervals to collect blood and tissue, and plasma time points were subjected to liquid chromatography 
with online tandem mass spectrometry (LC-MS/MS)-based untargeted metabolomics (n = 7–8). (a) Selective paired ion contrast analysis (SPICA) (Lieber 
et al., 2019) was used to identify time points where the plasma metabolome was most dramatically altered by IMC treatment compared to zeitgeber-
matched controls. Pairwise analysis was conducted between all adjacent time points for the control and IMC treatment groups, resulting in a total of 10 
comparisons made (five for Chow and five for Chow + IMC). Differences in the global plasma metabolome for each pairwise comparison were quantified 
via receiver operating characteristic (ROC) curve construction and area under the curve (AUC) calculations via Monte Carlo cross validation procedures 
in SPICA (Lieber et al., 2019) revealed that IMC most dramatically altered the plasma metabolome during the transition from ZT10 to ZT14. As a result, 
subsequent data analyses focused on this T10 to T14 transition, which also coincided with the light to dark phase transition and when the mice began 
to eat. (b) Volcano plots of the significantly altered metabolites (red) in positive and negative ion mode at the ZT14 time point. (c) Pathway analysis of 
data collected in negative ion mode at ZT14 reveals that IMC alters host lipid and lipoprotein metabolism among other metabolic pathways. (d) Relative 
plasma levels of phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) species are altered by IMC.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Choline trimethylamine (TMA) lyase inhibition impact on the circadian rhythmicity of host hormone levels and gene expression.

https://doi.org/10.7554/eLife.63998
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time points where IMC elicited the most significant alterations in the plasma metabolome (Figure 4a). 
SPICA was utilized based on its unique ability to highlight subtle changes in the metabolome via 
analysis of metabolite pairs, which vastly reduces normalization issues endemic to mass spectrom-
etry derived small molecule datasets (i.e., untargeted metabolomics). This approach delivers a more 
comprehensive picture of the overall metabolomic signature in TMA-regulated host circadian clock 
compared to the traditional single-metabolite oriented metabolomic data tools. Although there were 
clear IMC-induced metabolomic alterations at every time point, the most significant alterations were 
seen during the ZT10 to ZT14 transition, which coincides with the light to dark transition when mice 
typically begin to forage for food. Focusing on the ZT14 time point, we observed a large number 
of differentially abundant metabolites in the IMC-treated group that were in common pathways of 
lipid and lipoprotein metabolism, phase II conjugation, and other various macronutrient metabolic 
pathways (Figure 4b and c). In particular, we found that choline TMA lyase inhibition was associated 
with alterations in diurnal rhythms of phosphatidylcholine (PC) co-metabolites (Figure 4d). Gut micro-
bial TMA lyase inhibition caused near-complete circadian phase shifts for two PC species (16:0/22:6 
and 18:1/18:1), and two saturated species (16:0 and 18:0) of lysophosphatidylcholine (LPC), which 
showed robust oscillatory behavior distinct from control mice (Figure 4d). Furthermore, we found 
that the oscillatory behavior of genes involved in PC synthesis including choline kinase α (CKα) and 
phosphatidylethanolamine methyltransferase (PEMT) were significantly altered in TMA lyase inhibited 
mice (Figure 3—figure supplement 1b, d). It is important to note that IMC did not alter key plasma 
hormones (corticosterone or insulin) or lipids (non-esterified fatty acids) that are known to have strong 
effects on phospholipid metabolism themselves (Figure 4—figure supplement 1a, b). Collectively, 
these data suggest that gut microbial TMA production from the choline TMA lyase CutC is a critical 
determinant of host circadian rhythms in PC homeostasis.

Choline TMA lyase inhibition-induced alterations in the gut microbiome 
reduce adiposity and alter host circadian rhythms
Given the consistent and profound effects of choline TMA lyase inhibition on the gut microbial 
community (Figure  2, Figure  2—figure supplement 1), we sought to determine if the observed 
phenotypes could be attributed to these changes by colonizing germ-free mice with cecal contents 
from HFD- or HFD + IMC-fed donor mice (Figure 5a). Gut microbial communities display circadian 
changes and microbes transplanted from mice receiving choline TMA lyase inhibitors results in signif-
icant taxonomic differences from mice receiving control microbiota (Figure 5b–d). Interestingly, the 
gut microbial community from HFD + IMC mice conferred reduced visceral adiposity to donor mice 
challenged with 8 weeks of HFD and these effects are independent of body weight, liver weight, 
and TMA/TMAO production (Figure 5e–i). Additionally, the transplanted cecal microbiota from HFD 
+ IMC mice altered gene expression in a tissue-specific manner in alignment with our other studies 
(Figure 3b). Specifically, the expression of multiple circadian genes in the skeletal muscle, including 
Nr1d1, Cry1, Cry2, and Per2, was significantly reduced by the HFD + IMC microbiota at ZT14, the 
same time point that was highlighted in our unbiased metabolomics analysis (Figure 5j, Figure 4). 
In WAT, Foxo1 expression was significantly increased at ZT14 vs. ZT2 only in mice that received an 
HFD cecal microbiota and in contrast Adrb1 was increased at ZT14 in mice colonized with an HFD + 
IMC microbiota, but not those with the HFD gut microbes (Figure 5k). It is important to note that the 
cecal microbial transfer experiments into germ-free mice (Figure 5) were on a slightly different light 
cycle (14:10) compared to all other studies (12:12), which was necessitated by our gnotobiotic facility 
standard operating procedures. It remains possible that this lighting change may alter some of the 
circadian and metabolic phenotypes under study. Collectively, these findings further demonstrate the 
role of the gut microbiota in host physiology and as a therapeutic target through which pharmacolog-
ical intervention may be deliberately directed.

Discussion
Although obesity drug discovery has historically targeted pathways in the human host, a fertile period 
in biomedical research lies ahead where we instead target the microorganisms that live within us 
to improve obesity and related disorders. This paradigm shift in drug discovery is needed in light 
of the clear and reproducible associations between the gut microbiome and almost every human 

https://doi.org/10.7554/eLife.63998
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Figure 5. Cecal content transplant into germ-free mice informs adiposity and displays community-level circadian rhythmicity. Germ-free male B6/N 
mice were placed on a high fat diet (HFD) 2 weeks prior to cecal content gavage from mice fed either HFD or HFD + iodomethylcholine (IMC) for 6 
days. (a) Schematic representation of experimental design. (b) Stacked bar chart representing circadian rhythmicity at ZT2 and (c) ZT14 within the HFD 
cecal contents transplant (HFD CCTx) and HFD + IMC cecal contents transplant (HFD + IMC CCTx) groups (n = 3–5). (d) Principal component analysis 

Figure 5 continued on next page
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disease. Now we are faced with both the challenge and opportunity to test whether microbe-targeted 
therapeutic strategies can improve health in the human metaorganism without negatively impacting 
the symbiotic relationships that have co-evolved. Although traditional microbiome manipulating 
approaches such as antibiotics, prebiotics, probiotics, and fecal microbial transplantation have shown 
their own unique strengths and weaknesses, each of these presents unique challenges particularly 
for use in chronic diseases such as obesity. As we move toward selective non-lethal small molecule 
therapeutics, the hope is to have exquisite target selectivity and limited systemic drug exposure given 
the targets are microbial in nature. This natural progression parallels the paradigm shifts in oncology 
which have transitioned from broadly cytotoxic chemotherapies to target-selective small molecule 
and biologics-based therapeutics. Here, we provide the first evidence that a selective non-lethal inhib-
itor to the microbial choline TMA lyase CutC can have advantageous effects on host energy metab-
olism, adiposity, and insulin sensitivity. The current study demonstrates that gut microbe-targeted 
suppression of choline to TMA generation: (1) protects the host from DIO and glucose intolerance, (2) 
protects Lepob/ob mice from obesity, (3) increases energy expenditure and alters the expression of lipid 
metabolic genes in WAT, and (4) rapidly reorganizes gut microbial communities to reduce the Firmic-
utes to Bacteroidetes ratio and increase abundance of A. muciniphila. This study also reveals that 
nodes within the gut microbial TMAO pathway exhibit circadian oscillatory behavior, and that inhibi-
tion of microbial choline to TMA transformation is associated with alterations in: (1) the expression of 
core clock machinery in metabolic tissues; (2) the diurnal rhythmic behavior of gut microbial commu-
nities; and (3) circadian oscillation in choline-containing phospholipids; (4) and that these observations 
are at least in part transferred in a gnotobiotic context. Collectively, our findings reinforce the notion 
that the gut microbial TMAO pathway is a strong candidate for therapeutic intervention across a spec-
trum of obesity-related diseases and have uncovered metaorganismal crosstalk between gut microbe-
derived TMA and circadian metabolic oscillations in mice. Interestingly, recent meta-analysis of clinical 
studies demonstrated that circulating TMAO levels are dose-dependently associated with obesity in 
humans (Moreira Júnior et al., 2019), highlighting the potential translation of this work.

As drug discovery advances the area of small molecule non-lethal bacterial enzyme inhibitors it is 
key to understand how these drugs impact microbial ecology in the gut and other microenvironments. 
As we have previously reported (Roberts et  al., 2018; Gupta et  al., 2020; Organ et  al., 2020), 
IMC treatment does promote a significant remodeling of the cecal microbiome in mice. These IMC-
induced alterations occur as early as 1 week (Figure 2—figure supplement 1b, c, e) and persist even 
after 20 weeks (Figure 2). It is important to note that the observed IMC-induced alterations in the gut 
microbiome are generally expected to be favorable for the host. For instance, IMC lowers the ratio of 
Firmicutes to Bacteroidetes (Figures 2c, 5b and c, Figure 2—figure supplement 1e), which is known 
to be elevated in obese humans and rodents (Bäckhed et al., 2004; Ley et al., 2005; Turnbaugh 
et al., 2006; Turnbaugh et al., 2009). Of the taxa that were significantly correlated with circulating 
TMA levels (Akkermansia, Bilophila, Clostridiales, and Allobaculum), only Akkermansia was likewise 
correlated with body weight in Lepob/ob mice (Figure 2i). It is important to note that previous studies 
have shown favorable effects of A. muciniphila in obesity and diabetes, which has prompted its devel-
opment as a probiotic (Miao et al., 2015; Craciun and Balskus, 2012; Everard et al., 2013). Supple-
mentation with A. muciniphila can improve glucose tolerance in obese mice (Everard et al., 2013; 
Shin et al., 2014; Org et al., 2015). Furthermore, increases in A. muciniphila are consistently seen in 
mice treated with TMA lyase inhibitor (Roberts et al., 2018; Gupta et al., 2020; Organ et al., 2020), 
suggesting that small molecule inhibition of gut microbial choline TMA lyase may be an alternative 
means to enrich gut microbiomes with A. muciniphila. As small molecule bacterial enzymes inhibitors 
are developed, it will be extremely important to understand their effects on microbial ecology, and it is 
expected that some of the favorable effects of these drugs will indeed originate from the restructuring 

comparing HFD CCTx vs. HFD + IMC CCTx beta diversity of cecal 16S rRNA profiles at ZT2 and ZT14 8 weeks post-colonization (n = 2–5). (e) Weekly 
body weights with area under the curve (n = 8–10, error bars represent SD). (f) Liver and (g) gWAT weights as expressed as a percentage of total body 
weight (n = 6–8). (h) Plasma trimethylamine (TMA) and (i) trimethylamine N-oxide (TMAO) concentrations (n = 5–8). (j) Quantitative PCR (qPCR) analysis 
of key circadian rhythmicity genes in skeletal muscle (n = 5–8). (k) qPCR analysis of key circadian rhythmicity genes in gWAT (n = 5–8). Statistical analysis 
in panels (e–g) was performed using Student’s two-tailed t-test. Statistical analysis in panels (h–k) was performed using two-way analysis of variance 
(ANOVA) with Tukey’s multiple comparisons test.

Figure 5 continued
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of gut microbiome communities. This is not an uncommon mechanism by which host-targeted drugs 
impact human health. A recent study showed that nearly a quarter of commonly used host-targeted 
drugs have microbiome-altering properties (Maier et al., 2018), and in the context of diabetes ther-
apeutics, it is important to note that metformin’s anti-diabetic effects are partially mediated by the 
drug’s microbiome-altering properties (Dehghan et al., 2020). Given the strong association between 
gut microbiome and obesity and diabetes (Bäckhed et al., 2004; Ley et al., 2005; Turnbaugh et al., 
2006; Turnbaugh et al., 2009), it will likely be advantageous to find therapeutics that beneficially 
remodel the gut microbiome as well as engage either their microbe or host target of interest.

One burgeoning area of microbe-host crosstalk relevant to human disease is the intersection 
between gut microbes and host circadian rhythms (Org et al., 2015; Seldin et al., 2016; Thaiss 
et al., 2014; Liang et al., 2015). It is well appreciated that a transcriptional-translational feedback 
loop (TTFL) exists in mammalian cells to orchestrate an approximately 24 hr oscillatory rhythm in 
the expression of thousands of genes (Org et al., 2015; Seldin et al., 2016; Thaiss et al., 2014; 
Liang et al., 2015). The mammalian clock is coordinated by core transcription factors CLOCK and 
BMAL1, which peak during light phases, and crytochromes (CRYs) and period genes (PERs), which 
are most active during dark phases. Under normal conditions, the clock regulated TTFL maintains 
cell autonomous homeostatic responses to environmental ‘zeitgebers’ including light, food, xeno-
biotics, and exercise (Org et al., 2015; Seldin et al., 2016; Thaiss et al., 2014; Liang et al., 2015). 
However, disruption of normal circadian rhythms induced by abnormal light exposure, sleep-activity, 
or eating patterns has been associated with the development of many human diseases including 
obesity, diabetes, CVD, kidney disease, cancer, and neurological disease (Org et al., 2015; Seldin 
et  al., 2016; Thaiss et  al., 2014; Liang et  al., 2015). Therefore, ‘chronotherapies’ or therapies 
that prevent circadian disruption hold promise across a wide spectrum of diseases. Interestingly, 
it has been discovered that circadian disruption is associated with a marked reorganization of gut 
microbial communities, and microbial abundance in the gut exhibits circadian rhythmicity (Org 
et al., 2015; Seldin et al., 2016; Thaiss et al., 2014; Liang et al., 2015). However, whether gut 
microbial metabolites contribute to circadian disruption is not well understood. Here, we show that 
multiple nodes with the metaorganismal TMAO pathway (choline, TMA, Fmo3, and Taar5) oscillate 
in a circadian manner, and that inhibition of the choline TMA lyase CutC rewires the host circadian 
clock itself, circadian rhythms in the cecal microbiome, and clock-driven reorganization of host lipid 
metabolic processes. The impact of gut microbial choline TMA lyase inhibition on the expression 
of core clock genes is modest in metabolic tissues such as the liver or WAT (Figure 3b; Figure 3—
figure supplement 1b, d). However, in skeletal muscle where the host TMA receptor Taar5 exhibits 
oscillatory behavior (Figure  3a), IMC treatment elicits profound alterations in the expression of 
Nr1d1 (RevErbα) and cryptochrome 1 (Cry1) (Figure 3b). Furthermore, gnotobiotic mice receiving 
a cecal content transplant from IMC-treated mice had a marked suppression of Cry1 and Per2 in 
the skeletal muscle after 8 weeks (Figure 5j). The oscillatory behavior of the TMA receptor Taar5 
is specific to both skeletal and cardiac muscle, and is not seen in the olfactory bulb where Taar5 
is essential to sense the fish-like odor of TMA (Thaiss et al., 2016; Wang et al., 2017). A recent 
report demonstrated that TMAO, but not TMA, can bind to and activate the endoplasmic retic-
ulum stress (ER stress)-related kinase PERK (Eif2ak3), and that TMAO binding to PERK regulates 
the expression of the forkhead transcription factor Foxo1 (Chen et al., 2019a). It is interesting to 
note that PERK was recently shown to regulate circadian rhythms that support sleep/wake patterns 
and cancer growth (Wu et al., 2017; Chen et al., 2019b). We also observed tissue-specific alter-
ations in the circadian expression of Foxo1 with IMC treatment (Figure  3—figure supplement 
1b,d; Figure  4—figure supplement 1d, Figure  5k). However, additional studies are needed to 
understand whether the TMAO-PERK-FOXO1 signaling axis is mechanistically linked to oscillatory 
behavior in metabolism or associated metabolic disease. Additionally, several independent metab-
olomics studies have found that circulating levels of TMAO exhibit circadian oscillatory behavior 
(Ly et al., 2020; Bu et al., 2018; Beli et al., 2019). In a similar manner, the expression of flavin-
containing monooxygenase enzymes which convert TMA to TMAO are also under direct circadian 
clock transcriptional regulation (Giskeødegård et al., 2015; Bollard et al., 2001; Dixit and Roche, 
1984). Collectively, these emerging data suggest that gut microbe-derived TMA and potentially 
its metabolic co-metabolite TMAO may be underappreciated microbe-derived signals that impact 
host circadian rhythms in metabolism. Further studies are now warranted to test whether TMA lyase 
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inhibitors of the host liver TMAO-producing enzyme FMO3 can act as chronotherapies to improve 
circadian misalignment-associated diseases.

The metaorganismal TMAO pathway represents only one of many microbial metabolic circuits that 
have been associated with human disease. Many microbe-associated metabolites such as short chain 
fatty acids, secondary bile acids, phenolic acids, and polyamines have been associated with many 
human diseases (Brown and Hazen, 2015; Brown and Hazen, 2018). In a circadian and/or meal-
related manner, gut microbes produce a diverse array of metabolites that reach micromolar to milli-
molar concentrations in the blood, making the collective gut microbiome an active endocrine organ 
(Brown and Hazen, 2015). Small molecule metabolites are well known to be mediators of signaling 
interactions in the host, and this work provides evidence that diet-microbe-host metabolic interplay 
can shape normal diurnal rhythms in metabolism and obesity susceptibility in mice. Our work, along 
with that of many others, demonstrates clear evidence of bi-directional crosstalk between the gut 
microbial endocrine organ and host metabolism. As drug discovery advances it will be important 
to move beyond targets based solely in the human host. This work highlights that non-lethal gut 
microbe-targeted enzyme inhibitors can serve as effective anti-obesity therapeutics in preclinical 
animal models and provides proof of concept of a generalizable approach to target metaorganismal 
crosstalk in other disease contexts. Selective mechanism-based inhibition of bacterial enzymes has 
the advantage over host targeting given that small molecules can be designed to avoid systemic 
absorption and exposure, thereby minimizing potential host off-target effects. As shown here with the 
gut microbial TMAO pathway, it is easy to envision that other microbe-host interactions are mecha-
nistically linked to host disease pathogenesis, serving as the basis for the rational design of microbe-
targeted therapeutics that improve human health.

Materials and methods

 Continued on next page

Key resources table 

Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Strain, strain 
background (Mus 
musculus) C57BL/6J Jackson Laboratory

Stock #: 000664; 
RRID:MGI:3028467

Strain, strain 
background (Mus 
musculus) C57BL/6NCrl Charles River

Stock #: 574 
RRID:MGI:2159965

Genetic reagent 
(Mus musculus) B6.Cg-Lepob/J Jackson Laboratory

Stock #: 000632; 
RRID:MGI:6719537

Sequence-based 
reagent Fmo3 Sigma

F: ​CCCACATGCTTTGAGAGGAG
R: ​GGAAGAGTTGGTGAAGACCG

Sequence-based 
reagent Taar5 Sigma

F: AAAGAAAAGCTGCCAAGA
R: AAGGGAAGCCAACACACA

Sequence-based 
reagent Arntl1 Sigma

F: ​CCAA​GAAA​GTAT​GGAC​ACAG​ACAAA
R: ​GCAT​TCTT​GATC​CTTC​CTTGGT

Sequence-based 
reagent Nr1d1 Sigma

F: ​ATGCCAATCATGCATCAGGT
R: ​CCCATTGCTGTTAGGTTGGT

Sequence-based 
reagent Cry1 Sigma

F: ​TACTGGGAAACGCTGAACCC
R: ​ACCCCAAGCTTGTTGCCTAA

Sequence-based 
reagent Cry2 Sigma

F: ​GCTG​GAAG​CAGC​CGAG​GAACC
R: ​GGGCTTTGCTCACGGAGCGA

Sequence-based 
reagent Per2 Sigma

F: ​GCTGACGCACACAAAGAACT
R: ​TAGCCTTCACCTGCTTCACG

Sequence-based 
reagent Foxo1 Sigma

F: ​GAGC​CTCC​TTCA​AACA​GAGTAG
R: ​GCAA​ATGG​TAAG​AAAT​GGCAGAG

https://doi.org/10.7554/eLife.63998
https://identifiers.org/RRID/RRID:MGI:3028467
https://identifiers.org/RRID/RRID:MGI:2159965
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Sequence-based 
reagent Adrb1 Sigma

F: TGGGAGTGTGGCTTAGTA
R: ​AATG​CCTG​AAGG​TGCA​TTAAAC

Sequence-based 
reagent Chka Sigma

F: ​CTGATAGCATGGCTGGGGTT
R: ​CCCA​AATC​AAGC​TCAC​ACACC

Sequence-based 
reagent Pemt Sigma

F: ​TGTGCTGTCCAGCTTCTATG
R: ​GAAG​GGAA​ATGT​GGTC​ACTCT

Sequence-based 
reagent Pgc1a Sigma

F: CCCTGCCATTGTTAAGAC
R: GCTGCTGTTCCTGTTTTC

Sequence-based 
reagent CycloA Sigma

F: GCGGCAGGTCCATCTACG
R: GCCATCCAGCCATTCAGTC

Sequence-based 
reagent Gapdh Sigma

F: ​CCTC​GTCC​CGTA​GACA​AAATG
R: TGAAGGGGTCGTTGATGGC

Commercial assay 
or kit

Ultra Sensitive Mouse 
Insulin ELISA Crystal Chem Inc 90080

Commercial assay 
or kit Mouse Leptin ELISA Crystal Chem Inc 90030

Commercial assay 
or kit Liver Triglycerides Wako 994–02891

Commercial assay 
or kit Free Cholesterol Wako 993–02501

Commercial assay 
or kit Phospholipid C Wako 433–26301

Commercial assay 
or kit Total Cholesterol Fisher Scientific TR134321

Commercial assay 
or kit Mouse corticosterone kit Crystal Chem Inc 80556

Commercial assay 
or kit NEFA Kit Wako

999–34691, 995–
34791, 991–34891, 
993–35191, 276–
76491

Chemical 
compound, drug Iodomethylcholine This paper See Materials and methods for synthesis protocol

 Continued

Mice and experimental diets
C57Bl6/J and Lepob/ob mice were purchased from The Jackson Laboratory (Bar Harbor, ME) and treated 
with a gut microbe-targeted small molecule inhibitor of choline TMA lyase called IMC (Roberts et al., 
2018). For HFD feeding experiments, C57Bl6/J were maintained on 60% HFD alone or with the addi-
tion of 0.06% w/w IMC (D12942 and custom diet D15102401, respectively, Research Diets, Inc). For 
Lepob/ob and circadian studies, mice were maintained on a standardized control chow diet (Envigo diet 
TD:130104) with or without supplemental with IMC (0.06% w/w) (Envigo diet # 150813). Body weight 
was measured weekly. Food intake was assessed by weighing the food consumed weekly divided by 
the number of mice in each cage and normalized to the average body weight. For studies of circadian 
rhythms, 9-week-old C57Bl6/J male mice were adapted for 2 weeks on a standardized minimal choline 
chow (Envigo diet # TD.130104) with a strict 12 hr:12 hr light:dark cycle after shipment. Mice were 
then maintained on standardized chow (Envigo diet # TD.130104) or the same diet supplemented 
with 0.06% IMC (Envigo diet # 150813). After 7 days, plasma and tissue collection were performed 
every 4 hs over a 24 hr period. All dark cycle necropsies were performed under red light conditions. 
In the obesity treatment study paradigm C57Bl6/J mice fed an HFD (Research Diets # D12942) for 
6 weeks to establish obesity (body weight >35 g), and after 6 weeks of DIO mice were continued on 
HFD alone (Research Diets # D12942) or the same HFD-containing IMC (Research Diets #D15102401) 
for another 10 weeks to test whether IMC can improve obesity-related phenotypes. For studies of 
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the circadian patterns of gene expression and gut microbes, 9-week-old male mice were adapted for 
2 weeks on chow with a strict 12 hr:12 hr light:dark cycle after shipment. Mice were randomly housed 
the 4 mice per cage upon arrival. Mice were then switched to standardized chow with or without 
0.06% IMC by random assignment. After 7 days, plasma and tissue collection were performed every 
4 hr over a 24 hr period. Sample size estimation was calculated from previous circadian quantitative 
PCR (qPCR) datasets from our lab. All calculations were at 95% confidence level with a power of 80% 
and a level of significance set at 5% (two sided), for detecting a true difference in means as stated 
here. The standard deviation was 0.05 units for liver, requiring a sample size of 4 to detecting a true 
difference between 2 means 1 and 1.1. The standard deviation of muscle was 0.35 requiring a sample 
size of 8 to detecting a true difference in means 1 vs. 1.5. The standard deviation in adipose was 0.38 
requiring a sample size of 8 to detecting a true difference in means 1 vs. 1.5. Therefore, sample size n 
= 8 was used as it would be predicted to sensitive enough to detect circadian clock changes 50% of 
control. All mice were purchased from Jackson Labs and housed in groups of 5 per cage on corn cob 
bedding on ventilated racks. Before diet and drug treatments were administered, a mix of bedding 
was collected from all cages and then redistributed equally across all cages to set baseline microbiota 
diversity in all experimental mice. A minimum of two and up to four cages per condition were used for 
each experiment to account for cage effects. In the short-term IMC-feeding study to examine kinetic 
changes in the gut microbiome, 6-week-old male C57Bl/6 mice purchased from Jackson Laboratory 
were individually housed in cages with pooled bedding from all 16  mice enrolled in the study to 
normalize their baseline microbiome. Five days later, a baseline fecal sample was collected while the 
mice were on chow diet. After baseline collection, the mice were placed on either HFD (D12942) or 
HFD + 0.06% IMC (D15102401), and fecal pellets were collected every 48 hr for 6 days. For the cecal 
microbial transfer studies shown in Main Figure 5, 4-week-old germ-free B6/N mice were purchased 
from Charles River and placed on a sterile HFD (D12942, double-irradiated, 1.5× vitamin mix). Two 
weeks later, the mice were given an oral gavage of 200 mL pooled cecal contents suspended in sterile 
PBS + 20% glycerol from mice fed either HFD or HFD + 0.06% IMC for 6 days. A second gavage was 
performed 2 days later to ensure colonization. Gnotobiotic colonized mice were maintained using the 
Allentown Sentry SPP Cage System (Allentown, NJ) on a 14 hr:10 hr light:dark cycle. To account for 
potential cage effects, all data points from the kinetic and gntotobiotic 16S rRNA analysis represent 
mice from different cages. For all studies plasma was collected by cardiac puncture, and liver, WAT, 
and skeletal muscle was collected, flash-frozen, and stored at –80°C until the time of analysis. All mice 
harvested at the ZT14 time point underwent 24 hr cold exposure that ended 12 hr prior to necropsy. 
All mice were maintained in an Association for the Assessment and Accreditation of Laboratory 
Animal Care, International-approved animal facility, and all experimental protocols were approved by 
the Institutional Animal Care and use Committee of the Cleveland Clinic (Approved IACUC protocol 
numbers 2015–1381, 2018–1941, and 00002499).

Synthesis of IMC iodide
IMC iodide was prepared using a previously reported method using 2-dimethylethanolamine and 
diiodomethane as reactants in acetonitrile followed by recrystallization from dry ethanol (Astafev 
et  al., 2017). 1H- and 13C-NMRs of IMC were both consistent with that in the reported literature 
(Astafev et al., 2017), as well as consistent based on proton and carbon chemical shift assignments 
indicated below. High-resolution MS corroborated the expected cation mass and provided further 
evidence of structural identity.

1H-NMR (600 MHz, D2O): δ 5.13 (s, 2 H, -N-CH2-I), 3.90 (t, J = 4.8 Hz, 2 H, -CH2-CH2-OH), 3.52 
(t, J = 4.8 Hz, 2 H, -N-CH2-CH2-), 3.16 (s, 6 H, -N(CH3)2);
13C-NMR (150 MHz, D2O): δ 65.7 (-CH2-CH2-OH), 55.4 (-N-CH2-CH2-), 52.4 (-N(CH3)2), 32.3 (-N-
CH2-I); HRMS (ESI/TOF): m/z (M+) calculated for C5H13INO, 230.0036; found, 230.0033.

Measurement of plasma TMA and TMAO and related precursors
Stable isotope dilution high-performance liquid chromatography with online tandem mass spec-
trometry (LC-MS/MS) was used for quantification of levels of TMAO, TMA, choline, carnitine, 
and γ-butyrobetaine in plasma, as previously described (Hughes et al., 2010). Their d9(methyl)-
isotopologues were used as internal standards. LC-MS/MS analyses were performed on a Shimadzu 
8050 triple quadrupole mass spectrometer. IMC and d2-IMC, along with other metabolites, were 
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monitored using multiple reaction monitoring of precursor and characteristic product ions as 
follows: m/z 230.0 → 58.0 for IMC; m/z 232.0 → 60.1 for d2-IMC; m/z 76.0 → 58.1 for TMAO; m/z 
85.0 → 66.2 for d9-TMAO; m/z 60.2 → 44.2 for TMA; m/z 69.0 → 49.1 for d9-TMA; m/z 104.0 → 
60.1 for choline; m/z 113.1 → 69.2 for d9-choline; m/z 118.0 → 58.1 for betaine; m/z 127.0 → 66.2 
for d9-betaine.

Analysis of gene expression in mouse tissues
RNA was isolated via the RNAeasy lipid tissue mini kit (Qiagen) from multiple tissues. RNA samples 
were checked for quality and quantity using the Bio-analyzer (Agilent). RNA-SEQ libraries were 
generated using the Illumina mRNA TruSEQ Directional library kit and sequenced using an Illumina 
HiSEQ4000 (both according to the manufacturer’s instructions). RNA sequencing was performed by 
the University of Chicago Genomics Facility. Raw sequence files will be deposited in the Sequence 
Read Archive before publication (SRA). Paired-ended 1050  bp reads were trimmed with Trim 
Galore (v.0.3.3, http://www.bioinformatics.babraham.ac.uk/projects/trim_galore) and controlled for 
quality with FastQC (v.0.11.3, http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc) before align-
ment to the Mus musculus genome (Mm10 using UCSC transcript annotations downloaded July 
2016). Reads were aligned using the STAR alignerSTAR in single-pass mode (v.2.5.2a_modified, 
https://github.com/alexdobin/STAR) Schugar, 2021 copy archived at swh:1:rev:2eb750b45549f-
6b30a3a01f3b9e166e2de72a57d (Mistry et  al., 1991) with standard parameters but specifying 
‘–alignIntronMax 100000 –quantMode GeneCounts’. Overall alignment ranged from 88% to 99% 
with 61% to 75% mapping uniquely. Transcripts with fewer than one mapped read per million 
(MMR) in all samples were filtered out before differential expression (DE) analysis. The filtering step 
removed 12,692/24,411 transcripts (52%). Raw counts were loaded into R (http://www.R-project.​
org/) (R Development Core Team, 2021) and edgeR (Wang et al., 2014) was used to perform 
upper quantile, between-lane normalization, and DE analysis. Values generated with the cpm func-
tion of edgeR, including library size normalization and log2 conversion, were used in figures. Heat-
maps were generated of top 50 differentially expressed transcripts using pheatmap (Dobin et al., 
2013). Reactome-based pathway analysis was performed using an open-sourced R package: Reac-
tomePA (Robinson et al., 2010). For real-time qPCR analyses ~20 mg of snap-frozen liver tissue 
was homogenized in the 1 mL TRIzol reagent (Thermo Fisher Scientific, Cat. No. 15596018). Further-
more, 200 mL of chloroform were added and samples were spun down at 13,000 revolutions/min 
for 5 min. Upper clear layer was passed through the RNeasy Mini Spin Columns (Cat. No. 74104) 
for clean-up of RNA according to manufacturer’s instructions. DNase treatment (10 U/reaction) was 
performed according to the Qiagen RNeasy kit (Cat. No. 74104). Concentrations of high purity 
RNA were measured using Nanodrop (Thermo Fisher Scientific, ND-2000). Reverse transcription 
to generate cDNA was performed using qscript mastermix (Quanta- Bio Cat. No. 101414–106) as 
recommended by the manufacturer using 750 ng of RNA template. Resulting cDNA was diluted 10× 
and used in the real-time PCR using an Applied Biosystems Step One Plus thermocycler. Relative 
mRNA levels were calculated based on the delta-delta-CT method using the Applied Biosystems 
Step One Plus PCR System as we have previously described (Kolde, 2015; Yu and He, 2016; Lord 
et al., 2016; Thomas et al., 2013; Schugar et al., 2017; Brown et al., 2010). Primers used for 
qPCR are listed in the Key resources table.

Intraperitoneal glucose tolerance testing
The mice were fasted for 4 hr before the tests. Intraperitoneal glucose tolerance testing was performed 
after a single IP injection of glucose (2.5 g per kg body weight for standard diet and 1 g per kg body 
weight for HFD and Lepob/ob studies). Blood glucose was then measured before (0  min) and after the 
injection (15, 30, 60, 120 min) using a OneTouch SelectSimple glucometer (LifeScan Inc, China).

Measurement of plasma hormone and lipid levels
Plasma insulin (EZRMI-13K, EMD Millipore) and corticosterone (501320, Cayman Chemical) levels 
were measured by ELISA. Plasma non-esterified fatty acid (HR Series NEFA-HR, Wako) and triglyceride 
(L-Type Triglyceride M, Wako) levels were measured using enzymatic assays according to manufactur-
er’s instructions.
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Indirect calorimetry
To measure the effects of IMC on energy expenditure and physical activity, mice were housed in meta-
bolic cages (Oxymax CLAMS, Columbus Instruments) for indirect calorimetry measurements at room 
temperature (22°C). Mice were acclimated to the home cage system for 72 hr prior to data collection, 
and data were analyzed as previously described (Kolde, 2015; Yu and He, 2016; Lord et al., 2016).

Cecal microbiome analyses
Snap-frozen cecal DNA was isolated using the MO BIO Powersoil-htp 96-well soil DNA isolation kit 
according to manufacturer’s instructions. Region-specific primers (515F/806R) were used for ampli-
fying the V4 region of the bacterial 16S rRNA gene for high-throughput sequencing using the Illu-
mina HiSeq platform, paired-end 150 bp run. The reverse amplicon primer contains a 12-base Golay 
barcode sequence unique to each well that allows sample pooling for sequencing (Brown et  al., 
2008; Gromovsky et al., 2018; Caporaso et al., 2010b; Caporaso et al., 2012). More information 
can be found at the Earth Microbiome Project 16S rRNA Amplification Protocol where our protocols 
were adapted from: http://www.earthmicrobiome.org/emp-standard-protocols/16s/. Each sample 
was amplified in triplicate using 5 PRIME HotMaster Mix 2.5X (VWR 10847–708), combined, veri-
fied by 1.5% agarose gel, and quantitated using Pico Green dsDNA Assay Kit (Thermofisher P7589). 
Samples were pooled (250 ng) and cleaned using the UltraClean PCR Clean-Up Kit protocol (Mo-Bio 
12500–100). The quantified amplicons were sequenced with the Illumina HiSeq 2500 at the Broad 
Stem Cell Research Center at the University of California – Los Angeles on two lanes. The sequences 
were analyzed using the open-source Python software package Quantitative Insights Into Microbial 
Ecology (QIIME) version 1.9.1 (Caporaso et al., 2010b; Kuczynski et al., 2011) using default parame-
ters for each step, except where specified. Demultiplexed sequences were aligned and clustered into 
operational taxonomic units (OTUs) based on their sequence similarity (97% identity) using the Sort-
MeRNA/SumaClust open reference-based OTU picking protocol in QIIME. Representative sequences 
for each OTU were aligned using PyNAST (a python-based implementation of NAST [Hamady et al., 
2008] in QIIME and the Greengenes 11 database [Kuczynski et al., 2011]); 38,826,537 total reads 
were generated after removal of singleton reads and rare (<0.01% of total reads) OTUs, with an 
average of 776,531 reads per sample. Samples were rarefied to the depth of the sample with the 
lowest number of reads (86,941 sequences/sample) for beta diversity assessment only. Beta diver-
sity was assessed using weighted UniFrac in QIIME. Adonis statistical test with 1000 permutations 
was used to determine the strength and statistical significance of sample groupings. LEfSe was used 
with default parameters on OTU tables to determine taxa that best characterize each population 
(Caporaso et al., 2010a). Significant differences in relative abundance of taxa between groups and 
correlations with physiological parameters were assessed using the ALDEx2 package implemented in 
R (DeSantis et al., 2006; Segata et al., 2011). Data were adjusted for false discovery rate (FDR) using 
the Benjamini-Hochberg procedure and an adjusted p-value of p < 0.05 was considered statistically 
significant. All other plots were carried out using R (r-project.org).

Untargeted metabolomics
Mouse plasma samples were prepared for untargeted metabolomics by diluting each plasma sample 
1:20 in chilled methanol containing five internal standards as listed in the table below. The samples 
were then centrifuged at 14,000 g for 20 min to precipitate out the protein pellet. The supernatant 
was recovered and subjected to LC-MS analysis. One-microliter aliquots taken from each sample were 
pooled and this QC standard was analyzed every 10th injection. The untargeted metabolomics was 
performed by injecting 7 µL of each sample onto a 10 cm C18 column (Thermo Fisher CA) coupled to 
a Vanquish UHPLC running at 0.25 mL/min using water and 0.1% formic acid as solvent A and aceto-
nitrile and 0.1% formic acid as solvent B. The 15 min gradient used is given below. The Orbitrap Q 
Exactive HF was operated in positive and negative electrospray ionization modes in different LC-MS 
runs over a mass range of 50–750 Da using full MS at 120,000 resolution. Data-dependent acquisi-
tions were obtained on the pooled QC sample. The DDA acquisition (DDA) include MS full scans at a 
resolution of 120,000 and HCD MS/MS scans taken on the top 10 most abundant ions at a resolution 
of 30,000 with dynamic exclusion of 4.0 s and the apex trigger set at 2.0–4.0 s. The resolution of the 
MS2 scans were taken at a stepped NCE energy of 20.0, 30.0, and 45.0. XCMS was used to deconvo-
lute the data using 5 ppm consecutive scan error, 5–60 s as minimum and maximum peak width, S/N 
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threshold of 10, and span of 0.2 in positive mode and span of 0.4 in negative mode for retention time 
correction. The resulting peak table was further analyzed via MetaboLyzer (Mak et al., 2015). Briefly, 
the ion presence threshold was set at 0.7 in each study group. Data were then log-transformed and 
analyzed for statistical significance via non-parametric Mann-Whitney U-test (FDR-corrected p-value 
< 0.05). Ions present in just a subset of samples were analyzed as categorical variables for pres-
ence status via Fisher’s exact test. All p-values were corrected via the Benjamini-Hochberg step-up 
procedure for FDR correction. The data was then utilized for PCA, putative identification assignment, 
and pathway enrichment analysis via KEGG. In this dataset 7665 spectral features were detected, 
from which 1151 features were putatively assigned an identification in HMDB within a pre-defined 7 
ppm m/z error window. Also, the MS/MS spectra of 120 of these features matched with a score of 
greater than 50–120% unique compounds on the mzCloud database. Given the complicated nature 
of comparing the global metabolome across two treatment groups and six circadian time points, we 
used an algorithm called SPICA (Fernandes et al., 2013), to reveal subtle differences the plasma 
metabolome kinetically. Pairwise analysis was conducted between all adjacent time points (ZT2, ZT6, 
ZT10, ZT14, ZT18, and ZT22) for each treatment group (chow control vs. chow + IMC), resulting in 
a total of 10 comparisons made (five for chow and five for chow + IMC). Differences in the global 
plasma metabolome for each pairwise comparison were quantified via receiver operating charac-
teristic (ROC) curve construction and area under the curve (AUC) calculations via Monte Carlo cross 
validation procedures in SPICA (Fernandes et al., 2013). This analysis revealed that while all adjacent 
time points were roughly equally differentiated in the chow control data with an AUC averaging 0.884, 
this was not the case in the IMC-treated group. The AUC calculated for the IMC-treated group when 
comparing T10 vs. T14 was much greater than that of the chow-fed control group at the same time 
points (0.964 vs. 0.869), meaning the differences in the plasma metabolome between these two time 
points were much more pronounced in the IMC-treated mice compared to chow controls. Further-
more, The AUCs calculated for the subsequent two time point comparisons (T14 vs. T18 and T18 vs. 
T22) were much lower in the IMC-treated group (0.624 and 0.615, respectively) when compared to the 
chow control group (0.842 and 0.899, respectively), implying that the T14, T18, and T22 time points 
were poorly differentiated by IMC treatment. As a result, subsequent data analyses focused on this 
T10 to T14 transition, which also coincided with when the mice began to eat. The statistically signif-
icant positively charged and negatively charged spectral features which were present in more than 
70% of the samples at ZT14 are shown in red in the volcano plots of Figure 4. These features were 
then putatively identified in the Human Metabolome and the KEGG databases using their accurate 
mass-to-charge (m/z) values within a 7 ppm error window. The KEGG annotated pathways associated 
with these putative metabolites were then identified. Figure  4c represents such KEGG pathways 
associated with the negatively charged spectral features in this study. This figure displays the KEGG 
metabolic pathways with the highest statistically significance to which the ions were assigned. The 
blue and red bars are the unadjusted and the FDR-adjusted −log of p-values, respectively, while 
the orange line marks the significance threshold. This figure shows that lipid metabolism is the most 
perturbed metabolic pathway at ZT14.

Data analyses for circadian rhymicity (cosinor analyses)
A single cosinor analysis was performed as previously described (Fernandes et  al., 2014; Corne-
lissen, 2014). Briefly, a cosinor analysis was performed on each sample using the equation for cosinor 
fit as follows:

	﻿‍ Y(t) = M + Acos
(
2θ/τ + ϕ

)
‍�

where M is the MESOR (midline statistic of rhythm, a rhythm adjusted mean), A is the amplitude 
(a measure of half the extent of the variation within the cycle), Φ is the acrophase (a measure of 
the time of overall highest value), and τ is the period. The fit of the model was determined by the 
residuals of the fitted wave. After a single cosinor fit for all samples, linearized parameters were then 
averaged across all samples allowing for calculation of delineralized parameters for the population 
mean. A 24 hr period was used for all analysis. Comparison of population MESOR, amplitude, and 
acrophase was performed as previously described (Zhu et al., 2017). Comparisons are based on F-ra-
tios with degrees of freedom representing the number of populations and total number of subjects. 
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All analyses were done in R v.4.0.2 using the cosinor and cosinor2 packages (Nelson et al., 1979; 
Bingham et al., 1982; Sachs et al., 2013, Mutak, 2018, Sachs, 2014).

Statistical analysis
All data were analyzed using either one-way or two-way analysis of variance (ANOVA) where appro-
priate, followed by either a Tukey’s or Student’s t-tests for post hoc analysis. Differences were consid-
ered significant at p < 0.05. All mouse data analyses were performed using GraphPad Prism 6 (La 
Jolla, CA) software.
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